Dynamic Monopoly Pricing Under the Reference Price Effect

Melnikov S. V.

Dynamic Monopoly Pricing Under the Reference Price Effect

One of the important aspects of the theory and practice of firms is development of an optimal dynamic pricing strategy. Traditional marketing models consider the consumer as a rational agent who makes decisions based on current prices. However, in the dynamics, with repeated purchases, consumers form price expectations or reference prices which are compared with current prices. This effect is known as "the reference price effect". The work focuses on the dynamic monopoly pricing in the presence of the reference price effect. To study this question, the author constructed a model of the monopoly selling the product over T periods. The study considers a case when the reference prices are formed on the basis of prices from the previous period. In this case, buyers' purchase decisions also rely upon the ratio of the current and previous prices. In the long run, the monopoly can have various efficiency criteria. The article considers two efficiency criteria: the maximum profit within each period of time and the maximum profit for the whole time. The study allowed finding discrete and equilibrium solutions. A comparative analysis of profits of the monopoly by two criteria resulted in the following conclusions. In comparison with the situation of the absence of the reference effect, optimization by the global criterion increases profits and that by the local criterion reduces them. Obtained results show that in case of optimization by the global criterion the reference effect dwindles in the long run.

Keywords: monopoly, dynamic pricing, reference price effect

UDC 519.865

Melnikov S. V. – Candidate of Sciences (Economics), Associate Professor, Department of Economic Theory and Cybernetics, Odessa National Marine University (ul. Mekhnykova, 34, Odessa, 65029, Ukraine)

Email: nfn@mail.ru

One of the important aspects of the theory and practice of firms is development of an optimal dynamic pricing strategy. Traditional marketing models consider the consumer as a rational agent who makes decisions based on current prices. However, in the dynamics, with repeated purchases, consumers form price expectations or reference prices which are compared with current prices. This effect is known as "the reference price effect". The work focuses on the dynamic monopoly pricing in the presence of the reference price effect. To study this question, the author constructed a model of the monopoly selling the product over T periods. The study considers a case when the reference prices are formed on the basis of prices from the previous period. In this case, buyers' purchase decisions also rely upon the ratio of the current and previous prices. In the long run, the monopoly can have various efficiency criteria. The article considers two efficiency criteria: the maximum profit within each period of time and the maximum profit for the whole time. The study allowed finding discrete and equilibrium solutions. A comparative analysis of profits of the monopoly by two criteria resulted in the following conclusions. In comparison with the situation of the absence of the reference effect, optimization by the global criterion increases profits and that by the local criterion reduces them. Obtained results show that in case of optimization by the global criterion the reference effect dwindles in the long run.

Keywords: monopoly, dynamic pricing, reference price effect

UDC 519.865

Melnikov S. V. – Candidate of Sciences (Economics), Associate Professor, Department of Economic Theory and Cybernetics, Odessa National Marine University (ul. Mekhnykova, 34, Odessa, 65029, Ukraine)

Email: nfn@mail.ru
Introduction. One of the important aspects of the theory and practice of firms is the development of an optimal dynamic pricing strategy. Traditional marketing models consider the consumer as a rational agent who makes decisions based on current prices. However, in the dynamics, with repeated purchases, consumers form price expectations or reference prices which are compared with current prices. This effect is known as “the reference price effect”. Reference prices are determined by the following factors:

1. Memories of past prices. The price paid for the goods the previous time becomes a comparison basis for new prices.
2. The prices of related products and services.
3. The price of the favourite brand.
4. The nature of the industry. For example, people have come to expect large discounts in clothes shops.
5. The price which occurs in the market most often.
6. The fair price. Each consumer has their own opinion about what price level is fair.

In marketing research, the effects of the reference price became widely used after the article by Monroe (1973) [7]. Cutler (1992) [9] incorporates reference price effects into the traditional economic theory of consumer choice and examines the effects of reference price formation on the results of the traditional theory. Greenleaf (1995) investigates the impact of reference price effects on retail promo prices and describes the traditional theory of consumer choice and examines the effects of reference price formation on the results of the traditional theory. Greenleaf (1995) investigates the impact of reference price effects on retail promo prices and describes the traditional theory.

Problem statement. We consider a case when reference prices are formed on the basis of the prices of the previous period. In this case, the consumers’ purchase decisions also depend on the ratio of the past and current prices. In the long run, a monopoly can have different efficiency criteria.

Thus, the aim of this article is to research dynamic monopoly pricing for different efficiency criteria taking into account the reference price effect.

Main results and their justification. Zhang (2014) [10] investigated the model of a monopoly that sells the product in two consecutive periods. The reference price effect as an additional component of the basic demand occurs in the second period.

It is of interest to generalize the results obtained by Zhang (2014) [10] to the case of an arbitrary number of periods.

Consider a monopoly that sells a product over \(t \) periods, \(t = 0, 1, ..., T \). The set of periods where the reference price effect occurs we define as \(N = \{1, 2, ..., T\} \). The product is produced at a constant unit cost \(z \). The demand for the monopoly product depends on two factors: current price and previous price. In the zero period the effect of reference price is absent. The basic demand (in the absence of the reference price effect) is characterized by a traditional linear function \(Q_0 = b - k \cdot P_0 \), where \(P_0 \) and \(Q_0 \) are the price and demand volume in the zero period, \(b \) is market potential, and \(k \) is the coefficient of the price sensitivity of demand. Non-negativity condition for the demand \(P_0 \leq \frac{b}{k} \).

The reference price effect can be characterized as \(\phi \cdot (P_1 - P_{t-1}) \), \(t \in N \), where \(\phi \) is the coefficient of the reference price effect measuring the consumer's sensitivity to price change in time.

Thus, starting from the first period, the consumer will receive additional gains or losses from price changes. Accordingly, the demand function will be as follows: \(Q_t = b - k \cdot P_t - \phi \cdot (P_t - P_{t-1}) \), \(t \in N \). Non-negativity condition for the demand \(P_t \leq \frac{b + \phi \cdot P_{t-1}}{k + \phi} \).

We make a natural assumption that the coefficient of price sensitivity has a greater impact on the demand than the coefficient of the reference effect, \(k > \phi \).

Consider two criteria: the maximum profit within each time period (I) and the maximum profit for the whole time (II).

Criterion I - the maximum profit within each time period. We assume that the monopolist is in the period \(t - 1 \) and wants to maximize profit in the next period \(t \).

The monopoly’s profit is

For \(t = 0 \), \(\Phi_0 = (P_0 - z) \cdot (b - k \cdot P_0) \rightarrow \max \). \(P_0 \)

For \(t \in N \), \(\Phi_t = (P_t - z) \cdot (b - k \cdot P_t - \phi \cdot (P_t - P_{t-1})) \rightarrow \max \). \(P_t \)

By equating the first-order derivatives to zero, we find the optimal prices.

For \(t = 0 \), \(\Phi_0^{(i)}(P_0) = z + \frac{b - z \cdot k}{2 \cdot k} \Rightarrow \Phi_0^{(i)}(P_0) = \frac{b - z \cdot k}{2 \cdot k} \) (1)

For \(t \in N \), \(\Phi_t^{(i)}(P_t) = z + \frac{\phi \cdot P_{t-1} + b - z \cdot (k + \phi)}{2 \cdot (k + \phi)} \Rightarrow \Phi_t^{(i)}(P_t) = \frac{b - z \cdot (k + \phi)}{2 \cdot (k + \phi)} \) (2)

The price (1) is the optimal monopoly price in the absence of the reference effect, \(P_0^{*} = \Phi_0^{*} \).
The expression (2) is a linear non-homogeneous first-order difference equation.

Let us present a general solution to this discrete difference equation with the initial condition \(p_t = z + \frac{b - z \cdot k}{2 \cdot k} \) for \(t = 0 \):

\[
p^{(0)}(t) = z + \left(\frac{\varphi}{2 \cdot (k + \varphi)} \right) \left(b - z \cdot k \right) \frac{2 \cdot k}{2 \cdot k + \varphi} \cdot t \in \{0, 1, \ldots, T\}.
\]

Using the equilibrium condition \(p_t = p_{t-1} \), we find the equilibrium solution to the equation (2):

\[
p^e(t) = z + \frac{b - z \cdot k}{2 \cdot k + \varphi}.
\]

Below are the optimal trajectories of the monopoly with the initial conditions: \(b = 10, k = 0, z = 6, t = 0, 20 \) (Fig. 1).

Figure 1. The trajectories of the optimal prices (a) and profit (b) by criterion I

Criterion II - the maximum profit for the whole period.

The monopoly’s profit is

\[
F = \sum_{t=0}^{T} F_t \rightarrow \max_{ \{p_t \} }
\]

Monopoly profits within each time period:

\[
F_0 = (P_0 - z) \cdot (b - k \cdot P_0),
\]

\[
F_1 = (P_1 - z) \cdot (b - k \cdot P_1 - \varphi \cdot (P_1 - P_0)),
\]

\[
F_{t+1} = (P_{t+1} - z) \cdot (b - k \cdot P_{t+1} - \varphi \cdot (P_{t+1} - P_t)),
\]

\[
F_T = (P_T - z) \cdot (b - k \cdot P_T - \varphi \cdot (P_T - P_{t-1})).
\]

Equating the corresponding first-order partial derivatives to zero, we obtain a system of equations:

\[
p_0 = \frac{b + z \cdot (k - \varphi)}{2 \cdot k} + P_0 \cdot \frac{\varphi}{2 \cdot k},
\]

\[
p_{t+1} = \frac{2 \cdot (k + \varphi)}{\varphi} \cdot p_t + P_{t+1} - \frac{b + z \cdot k}{2 \cdot (k + \varphi)}, t \in \{1, 1, \ldots, T-1\},
\]

\[
p_T = \frac{b + z \cdot (k + \varphi)}{2 \cdot (k + \varphi)} + P_T - \frac{b + z \cdot k}{2 \cdot k}.
\]

Let us now find a general solution to the linear non-homogeneous second-order difference equation (6).

In order to do this, we first find the solution to the homogeneous equation

\[
\frac{2 \cdot (k + \varphi)}{\varphi} \cdot p_t + P_{t+1} = 0,
\]

The characteristic equation:

\[
\lambda^2 - \frac{2 \cdot (k + \varphi)}{\varphi} \cdot \lambda + 1 = 0.
\]

The discriminant equals

\[
D = \frac{4 \cdot k \cdot (k + 2 \cdot \varphi)}{\varphi^2} > 0.
\]

We have two different real roots

\[
\lambda_{1,2} = \frac{k + \varphi \pm \sqrt{k \cdot (k + 2 \cdot \varphi)}}{\varphi}.
\]

The general solution to the equation (6) has the form

\[
p^{(0)}(t) = C_1 \cdot \lambda_1^t + C_2 \cdot \lambda_2^t + p^{(0)}(t), \quad \text{where} \quad C_1, C_2 \quad \text{are arbitrary constants}, \quad p^{(0)}(t) \quad \text{is a particular solution to equation (6). The particular solution will be sought in the form} \quad p^{(0)}(t) = A \cdot t.
\]

The particular solution to the equation (6) coincides with the optimal monopoly price in the absence of the reference effect (1), \(p^*_{m0} = A \cdot t \).

Therefore, the general solution to the equation (6) is:

\[
p^{(0)}(t) = C_1 \cdot \lambda_1^t + C_2 \cdot \lambda_2^t + \frac{b + z \cdot k}{2 \cdot k}.
\]

We find arbitrary constants \(C_1, C_2 \) from the boundary conditions (5) and (7).
where
\[\begin{align*}
\alpha_1 &= \frac{1}{2} - \frac{\phi}{k} \lambda_1, \\
\alpha_2 &= \frac{1}{2} - \frac{\phi}{2(k + \phi)} \lambda_2, \\
\alpha_2 &= \frac{1}{2} - \frac{\phi}{2(k + \phi)} \lambda_2, \\
\gamma_1 &= \frac{b + z (k - \phi)}{2k}, \\
\gamma_2 &= \frac{b + z k}{2(k + \phi)}.
\end{align*} \]

For example, for two periods \((t = 0, 1) \), formulas for finding the optimum prices are:

\[(11) \]
\[(12) \]

Figure 2 shows that in the long run the optimal prices will tend to some equilibrium price. Simultaneously, the decrease in the optimal prices is connected with the end of the planning period – the boundary condition (7). Using the equilibrium condition \(P_{t-1} = P_t = P_{t+1} \), we find the equilibrium solution to the equation (6):

\[\rho^{*(II)} = \frac{b + z k}{2k} = \rho^*_m. \]

Thus, in the equilibrium state \((t \to \infty) \) the impact of the reference effect on the optimal price disappears, the solution to the homogeneous equation (8) will tend to zero, and only the particular solution (9) will stand.

Zhang (2014) [10] found that \(P^{*(II)}_0 > P^*_m \) and \(P^{*(II)}_1 < P^*_m \). This result was obtained because the study considered only two periods \((t = 0, 1) \). Consideration of the activities of the monopoly in the long run allowed concluding that the equilibrium price will tend to the optimal price of the monopoly in the absence of the reference effect \((P^*_m) \).

For comparison we show all optimal trajectories of the monopoly with the initial conditions: \(b = 10, k = 0.2, \varphi = 0.1, z = 6 \) for \(t = 0, 20 \) and \(t = 0, 40 \) (Fig. 2).

Figure 2. The trajectories of the optimal prices (a) and profit (b) by criterion II

Comparing the dynamics of profit according to two criteria, we can see that the profit by the global criterion II is higher than that by the local criterion I. This is due to the fact that optimization within each period ignores all dependences of prices in time.

Conclusions. Fibich et al. (2005) [2] concluded that the effect of the reference price is most noticeable immediately after a price change, before consumers have had time to adjust their internal reference prices. This is consistent with our results. The monopoly can increase its total profit in the presence of the reference effect exactly in the initial periods (Fig. 3).

Comparative analysis of the monopoly profit by two criteria leads to the following conclusions. Compared with the situation of absence of the reference effect, the optimization by the global criterion increases profits and that by the local criterion reduces them. Also, we can conclude that in case of optimization by the global criterion in the long run the reference effect dwindles.

In the future we plan to model monopoly pricing strategies taking into account other marketing effects.

ЛІТЕРАТУРА

REFERENCES

